

New Real-World Evidence Reveals Significant Renal Benefits of the Empagliflozin-Linagliptin FDC in Patients with Type 2 Diabetes

Preserving Renal Function in T2DM Remains a Core Clinical Challenge

High Prevalence: In specialized diabetes-care settings in India, at least one in three individuals with T2DM is estimated to have CKD.

Silent Progression: Early CKD is often asymptomatic, but kidney function can deteriorate rapidly as diabetic kidney disease progresses.

Dual Risk Factors: Sustained albuminuria (\uparrow UACR) and declining kidney function (\downarrow eGFR) are independent risk factors for CKD progression, cardiorenal events, and mortality.

Clinical Need: A need exists for therapies that address hyperglycemia while providing direct, potent kidney protection, even with the use of RAAS inhibitors.

Expand abbreviations
References to be added

A Dual-Mechanism Approach to Glycemic Control and Organ Protection

Empagliflozin (SGLT2-i)

- Proven to slow eGFR decline
- Reduce albuminuria
- Lower the risk of incident or worsening nephropathy (citing EMPA-REG OUTCOME)

Linagliptin (DPP4-i)

- No dose adjustment needed in CKD due to biliary elimination
- Associated with slower progression and greater regression of albuminuria (citing CARMELINA)

This FDC offers complementary mechanisms for both glycemic management and cardiorenal risk reduction in a single pill, simplifying the treatment approach.

Expand abbreviations
References to be added

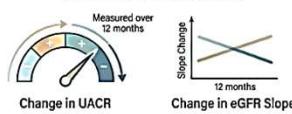
Study Design: A Retrospective Analysis of Clinical Practice

Objective: Evaluate Kidney Function Changes

To assess changes in UACR and eGFR over 12 months in T2DM patients

Setting: Two Tertiary Diabetes-Care Centers

The study was conducted at specialized centers in eastern India.


Population: 433 Adult Patients (T2DM)

Patients were SGLT2-i-naïve and previously uncontrolled or DPP4-i-based therapy

Primary Outcomes

Measured the change in UACR and the change in eGFR slope over 12 months.

Expand abbreviations

A Clinically Relevant Population with Existing Comorbidities

60.3 years

Mean Age

6.6 years

Mean Duration of T2DM

63.3%

Male

54.1%

History of Hypertension

27.6%

History of Heart Failure

10.3%

Established ASCVD

This cohort reflects the complex patients commonly managed in specialist practice.

Expand abbreviations

Significant Room for Improvement in Renal and Glycemic Parameters at Baseline

Renal Status (N=433)

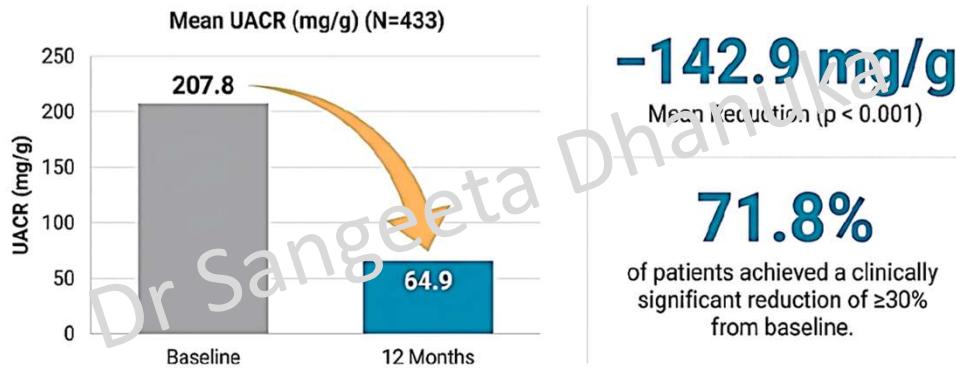
82.0

Mean eGFR (mL/min/1.73 m²)
(20% had eGFR < 60)

207.8

Mean UACR (mg/g)
(79% had albuminuria, UACR ≥ 30)

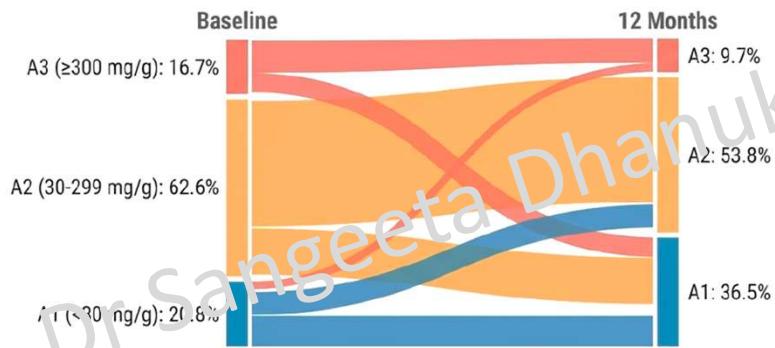
Glycemic Control (N=412)


8.3%

Mean HbA1c

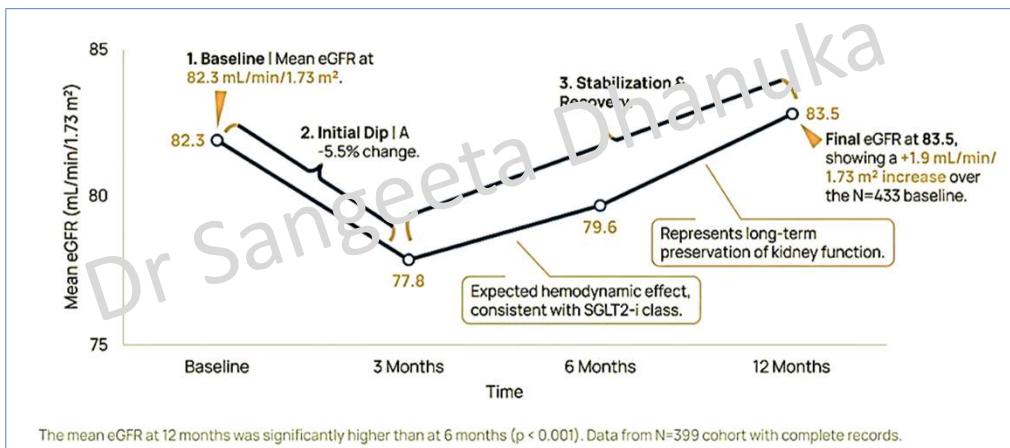
The study population began with elevated albuminuria and suboptimal glycemic control, representing a high-risk group in need of effective intervention.

Expand abbreviations


A Rapid and Substantial Reduction in Albuminuria seen with Empagliflozin-Linagliptin FDC

A $\geq 30\%$ UACR reduction is a validated surrogate endpoint for long-term CKD protection (add citation)

Expand abbreviations
References to be added


Patients were 2.2-times More Likely to Achieve Normo-albuminuria (A1) After 12 Months

2.2x Higher Odds of being in the A1 (normoalbuminuria) category at 12 months ($p < 0.001$).

Add footnote for albuminuria categories with reference

After an Expected Initial Dip, eGFR Stabilized and Recovered, Demonstrating Long-Term Preservation

Robust Improvements in Key Metabolic Parameters

Glycemic Control (HbA1c)

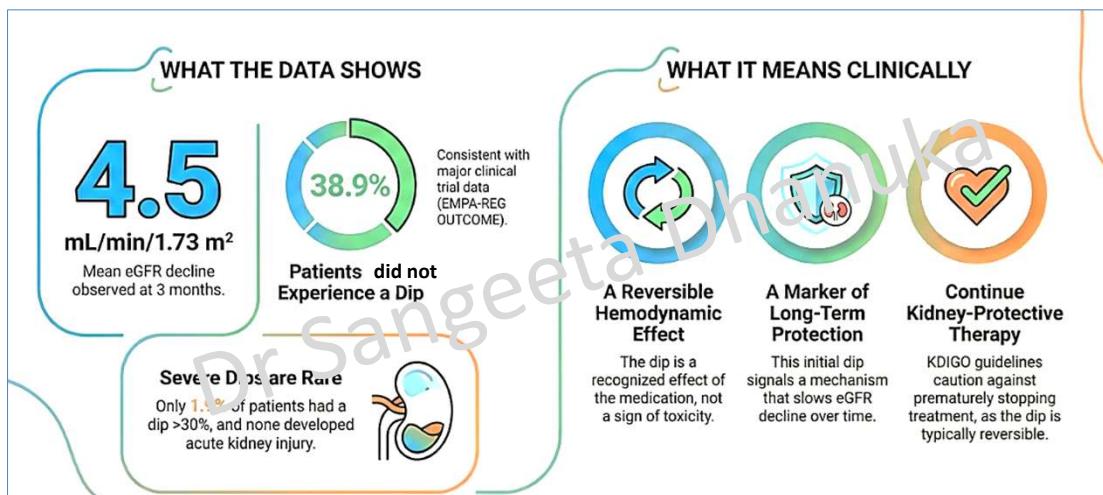
-1.5%

(from 8.3% to 6.7%, $p < 0.001$)

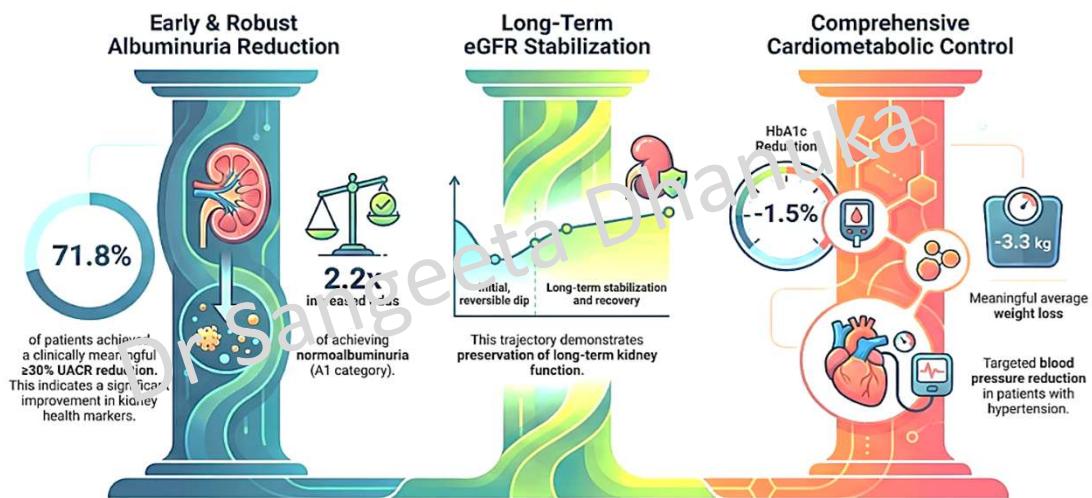
Body Weight

-3.3 kg

(from 69.7 kg to 66.4 kg, $p < 0.001$)



Blood Pressure


-8.9 mmHg

Significant SBP reduction in patients with baseline SBP ≥ 130 mmHg ($p < 0.05$)

Understanding the Initial eGFR Dip: A Sign of Therapeutic Action, Not Harm

Three Pillars of Clinical Benefit with Empagliflozin-Linagliptin FDC

A Key Principle for Practice: Interpret Renal Outcomes Longitudinally, Not Cross-Sectionally

What We See (A Single Snapshot)

An initial eGFR Dip at 3 months.

A reduction in UACR lab values.

What It Means (The Longitudinal Story)

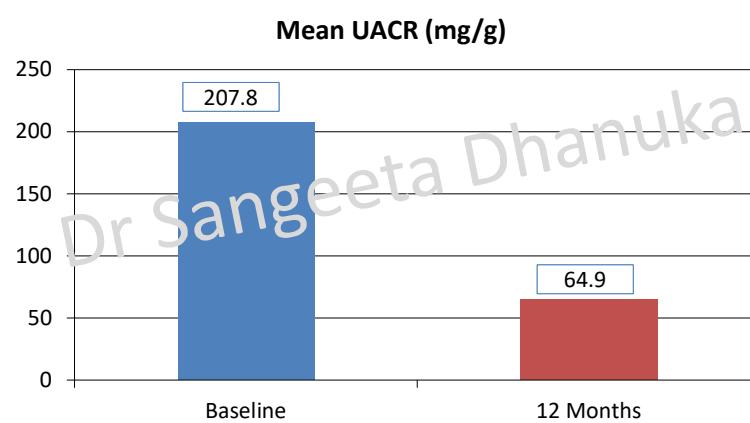
A predictable hemodynamic effect that signals long-term preservation.

Early renal risk modification, a meaningful win that reduces cardiorenal risk.

Empagliflozin–Linagliptin FDC Real-World Renal Outcomes from India

Unmet Need in T2DM & CKD

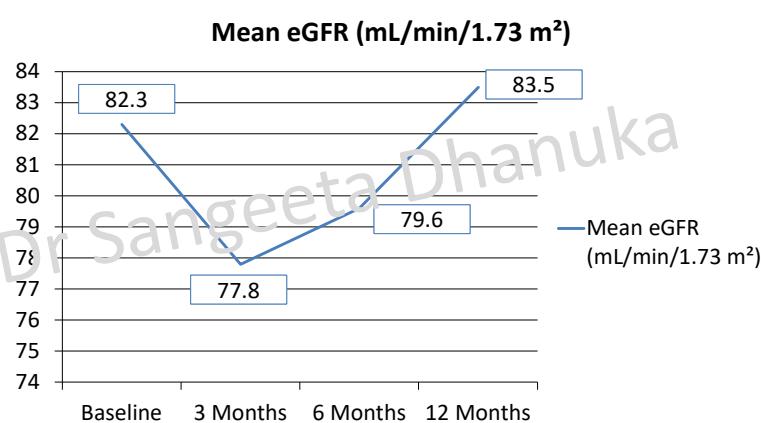
- CKD is common, progressive, and often under-recognized in T2DM.
 - Albuminuria and eGFR independently predict renal and CV outcomes.
 - Early renal intervention offers an opportunity for risk modification.


Study Overview

- Retrospective real-world observational study.
 - 433 SGLT2i-naïve T2DM patients uncontrolled on DPP-4i based combination therapy
 - initiated on Empagliflozin-Linagliptin FDC
 - 12-month follow-up in routine outpatient practice

Baseline Patient Characteristics

- Mean age 60.3 years; 63.3% male.
 - Mean HbA1c 8.3%
 - Mean GFR 82 mL/min/1.73 m²
 - Mean UACR 207.3 mg/g
 - Hypertension: 54.1%; Heart failure: 27.6%; ASCVD: 10.3%.
 - 79% had elevated albuminuria (UACR \geq 30 mg/g).


Reduction in Albuminuria (UACR)

Clinical Interpretation: UACR

- Mean UACR reduction of 142.9 mg/g over 12 months ($p < 0.001$)
 - 71.8% of patients achieved $\geq 30\%$ reduction in UACR
 - Albuminuria reduction reflects early, modifiable renal risk

eGFR Dip and Recovery Over Time

Clinical Interpretation: eGFR

- Initial eGFR dip observed at 3 months ($-4.5 \text{ mL/min/1.73 m}^2$).
 - Subsequent stabilization and recovery by 12 months.
 - Pattern consistent with known hemodynamic effects of SGLT2 inhibition.

Metabolic Outcomes

- HbA1c reduction of -1.5% over 12 months.
 - Mean body weight reduction of -3.3 kg
 - Renal benefits observed alongside glycemic improvement.

Key Takeaways

- Empagliflozin–linagliptin FDC demonstrated meaningful renal benefits in real-world practice
 - Findings support albuminuria reduction and stabilization of kidney function
- Renal outcomes should be assessed longitudinally, not cross-sectionally.
 - Early eGFR dip is expected and reversible, not a safety signal.